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ABSTRACT 
Fine particulate matter (PM2.5) is a federally-regulated air 
pollutant with well-known impacts on human health. The 
FAA’s Destination 2025 program seeks to decrease aviation-
related health impacts across the U.S. by 50% by the year 
2018. Atmospheric models, such as the Community Mul-
tiscale Air Quality model (CMAQ), are used to estimate 
the atmospheric concentration of pollutants such as PM2.5. 
Sensitivity analysis of these models has long been limited to 
finite difference and regression-based methods, both of which 
require many computationally intensive model simulations 
to link changes in output with perturbations in input. Fur-
ther, they are unable to offer detailed or ad hoc analysis for 
changes within a domain, such as changes in emissions on 
an airport-by-airport basis. In order to calculate the sensi-
tivity of PM2.5 concentrations to emissions from individual 
airports, we utilize the Decoupled Direct Method in three 
dimensions (DDM-3D), an advanced sensitivity analysis tool 
recently implemented in CMAQ. DDM-3D allows calculation 
of sensitivity coefficients within a single simulation, eliminat-
ing the need for multiple model runs. However, while the 
output provides results for a variety of input perturbations 
in a single simulation, the processing time for each run is 
dramatically increased compared to simulations conducted 
without the DDM-3D module. 
Use of the XSEDE Stampede computing cluster allows us 

to calculate sensitivity coefficients for a large number of input 
parameters. This allows for a much wider variety of ad hoc 
aviation policy scenarios to be generated and evaluated than 
would be possible using other sensitivity analysis methods 
or smaller-scaled computing systems. We present a design of 
experiments to compute individual sensitivity coefficients for 
139 major airports in the US, due to six different precursor 
emissions that form PM2.5 in the atmosphere. Simulations 
based on this design are currently in progress, with full results 
to be published at a later date. 
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1. BACKGROUND 

1.1 Aviation 
Aviation is a critical component of transportation infras-

tructure in the United States. Since 2001, the proportion of 
domestic miles traveled by air compared to other modes has 
increased steadily from 9.5% in 2001 to 11.8% in 2011[8]. In 
2013, air carriers flew nearly 578 billion domestic passenger-
miles, an increase of 17% over the past decade[9]. The Federal 
Aviation Administration (FAA) expects this rate of growth 
to continue, projecting year-over-year increases of 2.5% over 
the next 25 years[13]. 
The FAA’s Aviation Emission Design Tool (AEDT)[27] 

contains over 2,000 active airports in the United States; of 
these, the busiest 200 airports represent 85% of total flights 
and 95% of total fuel consumption. From this group, major 
commercial hubs represent an even more disproportionate 
level of activity, with the top ten U.S. airports alone contribut-
ing nearly one-quarter of all trips taken and one-third of all 
fuel consumed. Major hub airports are generally located in 
or near U.S. cities; their high levels of activity, steady growth 
rate and proximity to population centers provide strong mo-
tivation for investigation into the health effects associated 
with airport operations. The FAA’s Destination 2025 vision 
framework sets out a series of goals to improve the avia-
tion industry’s level of safety and future sustainability. One 
of these goals is the reduction of aviation emission-related 
health impacts by 50% by the year 2018 compared to 2005 
baseline levels[31]. 

1.2 Particulate Matter 
Atmospheric particulate matter1 is broadly defined as any 

nonwater substance that exists in liquid or solid form, is of 
microscopic size, and is suspended in the atmosphere. We 
may additionally discriminate between classes of particulates 
by their size and chemical composition. Fine particulate mat-
ter, or PM2.5, is generally defined as the set of particulates 
with aerodynamic diameter 2.5 microns or smaller. 
PM2.5 may be broken down by chemical composition into 

two categories: primary and secondary. Primary PM2.5 is 
the set of particulates emitted directly into the atmosphere, 
e.g. smoke from incomplete combustion, sea salt from ocean 
spray, dust from brake pads and suspended dust; secondary 
PM2.5 is formed in the atmosphere from the oxidation of 
precursor species such as SO2 and NOx. 

1Also known generally as aerosols, though this term properly 
refers collectively to both the particles and the gas in which 
they are suspended. 
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Atmospheric concentrations of particulate matter are fed-
erally regulated by the National Ambient Air Quality Stan-
dards (NAAQS)[30]. Annual concentrations (averaged over 
a three-year period may not exceed 12 µg/m3 , while daily 
concentrations (measured as the 98th percentile, averaged 
over three years) may not exceed 35 µg/m3 . 
Long-term exposure to fine particulate matter has been 

shown to be strongly associated with increased health im-
pacts due to its ability to penetrate deep into the respiratory 
system. Pope and Dockery reported that for a 10µg/m3 

increase in PM2.5 concentration, mortality from all causes 
increased by ten percent, including a six percent increase in 
cardiopulmonary mortality and an eight percent increase in 
lung cancer mortality[25]. Other estimates are higher; an 
update of the Harvard Six Cities Study (one of the original 
studies linking particulates with adverse health impacts) es-
timates an increase in premature mortality between 13% and 
16% for an equivalent increase in PM2.5 concentrations[17]. 
Previous estimates of total aviation contributions of PM2.5 

have shown that aviation LTO activity increases annual av-
erage concentrations by about 0.05%. However, this number 
is expected to increase to 0.20% by the year 2025[33]. An 
analysis of health impacts due to aviation emissions from a 
set of 99 U.S. airports estimated an increase from 75 prema-
ture deaths per year in 2005 to approximately 460 in 2025. 
This growth factor of 6.1 includes a factor of 2.1 attributable 
to aircraft emissions growth, a factor of 2.3 attributable 
to changing nonaviation concentrations, and a factor of 1.3 
attributable to population growth[20]. 

1.3 Air Quality Modeling 
Particulate matter and other pollutants are modeled using 

one of several types of chemical transport models (CTMs). 
An Eulerian CTM divides the domain into three-dimensional 
grid cells. Each cell is assumed to be well-mixed; that is, each 
chemical species in the cell is of uniform concentration2 . A 
commonly-used Eulerian CTM is the Community Multiscale 
Air Quality modeling system, or CMAQ[10]. 
Most Eulerian CTMs function in the same manner. For 

each grid cell and at each time step, chemical concentrations 
for each species are governed by the basic advection-reaction-
dispersion equation: 

∂ 1 
Yi = −r(uYi) + r(ρKrYi) + Ri + Ei 

∂t ρ 

where Yi represents concentration of a chemical species, u 
represents velocity of the medium, ρ the density of the me-
dium, K the turbulence diffusivity, Ri the reaction rates, 
and Ei the emissions rate. 
Because the chemical mechanisms and reaction rates are 

periodically updated, CTMs are modular in nature, allowing 
state-of-the science inputs to be used. The most recent 
gas-phase chemical mechanism for CMAQ is the Carbon 
Bond 5 chemical mechanism (CB05) [34]. CB05 contains 
about 80 chemical species3 , including ozone, nitrogen dioxide, 

2In contrast, Lagrangian CTMs follow emitted “puffs” or 
“plumes” of chemicals as they move through the atmosphere. 
Hybrid models combine these two approaches, tracking puffs 
of pollutants until they disperse to the degree that they may 
be included within a well-mixed grid cell. 
3Some species with similar behaviors are grouped to simplify 
the model; for example, XO2 denotes any hydrocarbon chain 
ending in two oxygen atoms. Throughout this work, species 

and various hydrocarbons. The aerosol module, AERO6, 
adds another 60 aerosol species, calculating concentrations 
of primary and secondary particulates across a range of size 
distributions[11, 28]. 

1.4 Sensitivity Analysis 
While building a working model of atmospheric conditions 

is interesting in its own right, the real value of the model 
comes from the ability to evaluate its sensitivity to inputs. 
This can take the form of zero-out analysis, or source ap-
portionment, in order to quantify the total contributions of 
a source to ambient chemical concentrations; alternatively, 
comparison of model outputs can be made based on pertur-
bations of input variables, such as atmospheric conditions, 
reaction rates, boundary conditions, or in our case, rates of 
emissions. These output comparisons can be used to evaluate 
various policy or environmental scenarios. 
The simplest form of sensitivity analysis is known as finite 

difference analysis, or the subtractive or brute-force method. 
In this type of analysis, two or more model simulations are 
conducted: a single “base case”, and a series of sensitivity 
cases, each with a single or more input variables changed. 
The output concentration from each sensitivity case is then 
subtracted from the base case in order to discern the effect 
of the change in input. The advantage of this method is its 
accuracy, and its ability to fully capture the nonlinearities 
of the model; however, in order to evaluate n modeling 
scenarios, n+1 simulations must be conducted—a substantial 
computational cost. 
A more sophisticated method is the response surface model 

(RSM). To construct a response surface, a series of “train-
ing runs” are conducted, each with small variations in the 
selected inputs. An ordinary regression is run on the out-
puts, and the resulting coefficients can be used to predict 
the results of hypothetical variations in the input factors 
used to train the model. While this method is effective in 
that it allows ad hoc scenarios to be considered without re-
running atmospheric simulations, it requires a large number 
of training simulations—typically at least three per variable 
of interest[3]. Further, depending on the sampling methods 
used in the regression, expansion of the model to accommo-
date additional variation in inputs may require that some or 
all of the training simulations be re-conducted[21]. 
A third method, and the one central to our experiments, 

is the decoupled direct method in three dimensions (DDM-
3D)[14, 24, 22]. While finite difference and RSM methods are 
conducted using output from a series of simulations, DDM-
3D is an “inside the model” method that calculates sensitivity 
coefficients for a given set of sensitivity parameters at each 
modeled timestep. Numerically, the equation 

∂Yi
Ci,j = 

∂Xj 

represents the sensitivity Ci,j of the concentration of species 
Yi to a change in sensitivity parameter Xj . Returning to 
our advection-reaction-dispersion equation, this takes the 
following form: 

∂ 1 
Ci,j = −r(uCi,j ) + r(ρKrCi,j ) + JiCj + Ei

∂t ρ 

in monospace font refer to in-model species or pseudo-species, 
while those typeset conventionally refer to their real-world 
counterparts. 



where J is the corresponding row from the Jacobian matrix 
representing interspecies chemical interaction kinetics[23]. It 
is important to note that the Jacobian must be calculated 
(unless its rate of change is quite slow) for each timestep[14]. 
A sensitivity parameter can be nearly any input variable 

in the model; in our case, we use emissions of six PM2.5 

precursor species from a set of airports (i.e., the Cartesian 
product of our list of species and our list of airports). Once 
the coefficients C for each species i and input parameter j 
are calculated, we can evaluate hypothetical scenarios using 
the equation 

0Yi = Yi +ΔXj Ci,j 

Here, Yi represents the base concentration of species i—that 
is, the concentration determined by CMAQ without the DDM 
calculations—while Yi 

0 represents the adjusted concentration. 
ΔXj represents the multiplicative scaling factor of input 
parameter j. No change in the variable (i.e., the trivial case) 
would be shown by using ΔXj = 0. A “zero-out” scenario 
would use a value of ΔXj = −1; a thirty percent increase 
would use a value of ΔXj = .3. Note that while Ci, j is 
output in concentration units, it should be interpreted in 
terms of sensitivity to scaled input parameters rather than 
concentration. 
First-order4 DDM has been shown to compare favorably 

in output with brute force calculations for reductions of up 
to 20% for both primary and secondary emissions[16]. Be-
cause aviation LTO emissions represent far less than 20% 
of all PM2.5 precursor emissions for a typical regional mod-
eling domain, our calculated sensitivity coefficients should 
be sufficiently accurate for perturbations of at least ±100%. 
Only one simulation is required for a given set of sensitivity 
parameters, although each additional parameter adds to the 
required processing time. To expand the domain, additional 
sensitivity parameters can be calculated without re-running 
the entire suite of experiments. 

2. METHODOLOGY 
Previous studies quantifying the contribution of aircraft 

LTO emissions to ambient PM2.5 concentrations have used 
either finite difference or response surface methods, and 
accordingly have focused on either a few individual airports 
or the entire sector. Use of the DDM algorithm gives more 
flexibility in implementation by allowing any combination 
of designated airport and emission species to be designated 
as a sensitivity parameter. As a result, a more flexible 
set of scenarios can be modeled than with single-airport or 
domain-wide simulations. For example, routing more hub 
traffic through an airport in a more sparsely-populated region 
may decrease overall health impacts from aviation emissions 
without dramatically reducing overall air activity. However, 
due to the computationally intensive nature of DDM, it is 
important to design an experiment that balances resolution 
of output with a reasonable model runtime. Because of the 
extensive parallel computing requirements of our model, it 
is necessary to design a set of experiments to take advantage 

4Higher-order implementations of the DDM algorithm— 
those that model nonlinear or cross-sensitivities to input 
parameters—have been implemented in CMAQ[35]. How-
ever, in light of our unusually large number of sensitivity 
parameters, the additional computational requirements are 
prohibitive in our design of experiments. 

of the resources offered by a large-scale, high performance 
scientific computing cluster. 

2.1 Domain 
We restrict our domain to the continental United States 

(CONUS), using a 148 × 112 grid of 36 km × 36 km cells 
typical for a model application of this scale5 . Vertically, we 
limit our emissions to those from aircraft landing and takeoff 
operations (LTO; i.e. emissions within the lowest 3,000 
ft). Cruise-altitude emissions do have additional impacts on 
both PM2.5 concentrations and health outcomes on a global 
scale[6]; however, it is more difficult to evaluate their impacts 
on a regional or continental scale. Additionally, while the 
atmospheric simulation is carried out with 34 vertical layers, 
health impacts are only evaluated at the surface layer, and 
thus we restrict our model output to sensitivities at ground-
level. 
Our flight segment and meteorological data come from 

2005. To ascertain annual averages, the bare-minimum mod-
eled period is two months, typically January and July; this 
period of time captures seasonal (winter-summer) variation 
while smoothing out short-term weather effects. Ideally, a 
simulation is conducted for a full year to reach an accurate 
annual average; however, in order to reduce runtime we de-
cided on a compromise of four representative months (e.g. 
January, April, July, and October). For each contiguous 
modeled period, a “spin-up” period of two weeks is conducted 
in order to allow the model to reach a steady state from its 
initial conditions. 

2.2 Sensitivity parameters 

2.2.1 Airport selection 
While an ideal experiment would allow us to truly quantify 

the sensitivity of PM2.5 concentrations to emissions from ev-
ery airport in the United States, the marginal computational 
cost of each sensitivity parameter restricts their number. 
Because a relatively small number of the more than 2,000 
airports represented in the AEDT are responsible for the 
majority of emissions, it is feasible to pick a subset of these 
airports that provide sufficient coverage in terms of geography 
and activity (in terms of fuel burn and passenger-trips) and 
still capture the majority of air quality and health impacts. 
Our airport selection process consists of three criteria: (1) 

the top ninety-nine airports in the United States, selected 
by total fuel burned during takeoff or approach from U.S. 
airports, (2) smaller airports in NAAQS nonattainment areas 
conducting at least daily flight operations, and (3) the most 
active airport in any U.S. state lacking an airport meeting 
the above criteria. Using these guidelines, we selected 139 
airports in the CONUS region (figure 1). In order to retain 
the ability to evaluate changes in emissions across all U.S. 
airports en masse, the remaining airports were grouped into a 
single group, giving us a total of 140 separate airport entities. 

2.2.2 Emissions species 
We divide emitted PM2.5 precursor species into six species 

groups (table 1). Different types of aircraft and various oper-

5While CMAQ is capable of much higher horizontal grid 
resolutions—regional and local experiments often employ 
grid cells of 12 km, 4 km, or even 1 km per side—total health 
impacts have not been found to vary significantly with the 
size of the grid cell[2]. 
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Figure 1: Locations of the 139 airports included in 
the domain. 

Table 1: Sensitivity parameters for PM2.5 precursor 
subspecies[34]. 

Group Species Name 
PSO4 PSO4 Primary sulfate 
POC POC Primary organic carbon 
PEC PEC Primary elemental carbon 
VOC ALD2 Acetaldehyde 

ALDX Other aldehydes 
ETH Ethene 
ETHA Ethane 
ETOH Ethanol 
FORM Formaldehyde 
IOLE Internal olefin bond 
MEOH Methanol 
OLE Terminal olefin bond 
TOL Toluene-like 
XYL Xylene-like 

SO2 SO2 Sulfur dioxide 
NOx NO Nitric oxide 

NO2 Nitrogen dioxide 
HONO Nitrous acid 

ation modes cause the precursors to be emitted in different 
quantities; tracking them separately allows for the maximum 
variety of scenarios to be evaluated. 
Our initial approach used a single domain-wide emissions 

inventory for aircraft operations. We then “tagged” emissions 
to a designated airport on a grid-cell-by-grid-cell basis—that 
is, all LTO emissions from a grid cell were attributed to 
the major airport inside that grid cell. This method had 
two major shortcomings: first, aircraft ascent and descent 
trajectories often take them through more than one grid cell 
before reaching cruise altitude, thereby spreading their emis-
sions over a larger area than our initial methodology could 
account for; secondly, some grid cells contain more than one 
major airport (e.g. San Francisco and Oakland International 
Airports). Using chorded flight segment emissions data from 
the AEDT, we created separate emissions files for each air-
port in the domain, eliminating crossover between airports 
and allowing full landing and takeoff segment paths to be 
assigned to each airport regardless of trajectory (figure 2). 
One “flight” is a gate-to-gate aircraft operation—in other 

Figure 2: Left: initial, column-based emissions as-
signment strategy. Aviation emissions from airports 
A and B are assigned to cells 2 and 4, respectively. 
Right: when flight segment data is parsed, the 
column-spanning emissions patterns can be taken 
into effect; Airport A’s emissions are categorized to 
cells 1 through 3, while B’s are assigned to cells 3 
through 5. 

words, a trip. Each flight is made up of many flight seg-
ments, which are classified by location, distance, and aircraft 
operation mode. Using flight segment information obtained 
from AEDT, we select segments from takeoff through initial 
climb, and descent through landing. Flight segments were 
further limited to those below 3,000 ft. Departure flight 
segments were assigned to the airport of departure, and ar-
rival flight segments were assigned to the airport of arrival. 
Segments were processed in to gridded emission rate files 
using AEDTProc[4]. Background emission rates from EPA’s 
National Emissions Inventories (NEI-2005) were processed 
into grid-based emissions using the Sparse Matrix Operator 
Kernal Emissions (SMOKE)[29]. Meteorology for 2005 was 
processed from the Weather Research and Forecasting model 
(WRF), with outputs downscaled from NASA’s Modern-Era 
Retrospective Analysis for Research and Applications data 
(MERRA)[26]. We use CMAQ v5.0.2 with DDM-3D to pro-
cess our inputs to generate sensitivity and concentration 
output files. We group particulate species into primary and 
secondary groups according the methodology in Arunachalam 
et al. 2008[1]. 

2.2.3 Airport grouping mechanism 
Total model runtime is linearly related to the number 

of sensitivity parameters used; thus, any reduction in this 
number has a directly proportional reduction in total CPU-
hours needed (table 4). One method to reduce the total 
number of sensitivity parameters used is to group airports 
with relatively non-overlapping sensitivity fields into a single 
parameter. A similar approach was taken with an RSM-
based study of particulate emissions from power plants in 
the Eastern United States[15]. 
In order to group airports, we must first determine what 

constitutes a non-overlapping pair. Because CMAQ car-
ries calculations to a very high level of numerical precision6 , 

6It is nontrivial to define accuracy and precision in the 
context of comparing CMAQ model output with the “real 
world”. For one, model output is comprehensive spatially 
and temporally but is averaged across both dimensions, while 
monitored data is the opposite—spatially and temporally 
precise, but lacking in coverage across both dimensions. Sec-
ondly, the monitors used to measure ambient particulate 
matter are “uncalibrated”, with consistency between moni-
tors achieved by following a federally-regulated methodology 
rather than comparison to an established benchmark[32]. 
Finally, at high enough levels of numerical precision, the 
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Figure 3: Log-scale regions of influence for Las 
Vegas-McCarren International Airport. 

virtually every grid cell in the domain will have a nonzero 
sensitivity to emissions from even the smallest airport (fig-
ure 3). Thus, in order to group more than one airport into a 
single sensitivity parameter, we must establish a threshold 
below which emissions sensitivities are treated as zero. Using 
preliminary data from two one-week simulations—one in Jan-
uary, one in July—we determined an approximate estimate 
of the extent of influence for each airport in the domain. We 
then determined the distance r of the furthest cell above the 
threshold chosen above, and drew a circle of radius r around 
the home grid cell of the airport. A buffer of an additional 
two grid cells was applied to the outside of each circular 
region; if an airport was too small to generate sensitivities 
above the threshold, this two-cell buffer was applied to its 
home grid cell. Airports were then randomly sorted into 
non-overlapping groups. Using a threshold of 1 × 10−4 µg/m3 , 
we were able to fit all 139 airports into about thirty groups, 
with an order-of-magnitude plus two-grid-cell buffer around 
each airport’s domain of influence added for conservative 
purposes. 

2.3 Computing Environment 
Because their grid-cell based domains are inherently par-

allel, Eulerian models such as CMAQ are well-suited to 
implementation on parallel computing systems. Grid cells 
are divided into contiguous sub-domains, with each subdo-
main assigned to a different processor for parallel calculations. 
While a CMAQ simulation could in theory be parallelized on 
a system of processors up to the number of horizontal grid 
cells used—in our case, 16,576—our benchmarking efforts 
showed a considerable decrease in per-CPU efficiency past 
a certain number of processors due to the demand on in-
put/output file access (figure 4). Doubling the per-simulation 
number of processors from eight to sixteen resulted in a halv-
ing of wall-clock runtime with virtually no change in total 
CPU-hours. However, increasing the number of processors 
from sixteen to thirty-two reduced wall-clock time by less 
than a factor of two, while increasing CPU hours by about 
37%. 

CMAQ outputs themselves are sensitive to factors such as 
levels of optimization and processor instruction sets. Regula-
tory limits on exposure are given in terms of µg/m3 , while 
commercially-available monitors have a detection limit of of 
0.04–1 µg/m3[12]. 

Figure 4: Model runtime for one simulated day, 
showing decreasing processor efficiency between 16 
and 32 cores. 18 sensitivity parameters were used 
in these benchmarks. 

Figure 5: Model runtime, showing linear increase in 
processing time as parameters are added. 

We noted a near-linear increase in model runtime with each 
additional sensitivity parameter (figure 5). Our benchmark-
ing efforts also showed us that total memory available was a 
severe limiting factor in the number of sensitivity parameters 
per simulation (slightly more than one parameter per giga-
byte of RAM available). While Stampede does have a number 
of large-memory (1TB) nodes available for use, designing 
our experiment around many parallel simulations instead of 
fewer, high-memory simulations proved to keep the overall 
duration of the experiment low. For an eighteen-parameter 
simulation conducted on sixteen processors, the total wall-
clock duration was about six hours—a good balance between 
minimizing both the total number of CPU-hours and the 
wall-clock experiment duration. 
Using eighteen parameters per simulation allows us to 

fit three groups (three groups, each with six species for a 
total of eighteen parameters) per simulation. Thus, to fit all 
thirty groups, we needed ten parallel model simulations, each 
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Figure 6: Total PM2.5 sensitivity (primary and sec-
ondary) to all airports in the domain. 

operating for forty-five days per modeled month. In order to 
run a quarterly experiment, we estimate a total wall-clock 
time of 450 days and about 173,000 CPU-hours. However, 
this is parallelizable by a factor of forty (ten groups, with 
four periods), for an optimal, perfectly-parallel wall clock 
runtime of 11.25 days (table 2). 

Table 2: Model runtimes (16 processor, 18 parame-
ter configuration). 
Period Wall Clock CPU-Hrs 

Hours Days 
Day 6 0.25 96 
Run (45 days) 270 11.25 4,320 
Period (10 runs) 2,700 112.50 43,200 
Experiment (4 periods) 10,800 450.00 172,800 

Another factor to consider with the use of DDM is the 
extremely large output files generated. Each day generates 
around fifteen gigabytes of data, including comprehensive, 
state-of-the-simulation restart file at the end of each day. 
However, for the purposes of evaluating health impacts, only 
about 4.6 GB need be retained. An experiment with four 
months of duration will generate between six and eight ter-
abytes of uncompressed output. 

3. RESULTS 
The aggregation of modeled sensitivities from all sources 

results in an intuitive sensitivity grid, with high values near 
major airports (figure 6). However, the true power of our 
dataset is shown in disaggregate form, where sensitivity of 
each individual output species can be linked to any com-
bination of airport and emissions group. For example, we 
can show that primary PM2.5 sensitivities to emissions from 
Atlanta’s Hartsfield-Jackson International Airport (ATL) are 
grouped around the airport itself, while secondary sensitivi-
ties are located further downwind, reaching as far as central 
North Carolina (figure 7). We can also show secondary 
PM2.5 sensitivities to emissions from Charlotte-Douglas In-
ternational Airport (CLT), despite the fact that they overlap 
geographically with sensitivities to emissions from ATL. 
As an example, we compare preliminary PM2.5 sensitivities 

in two grid cells: one directly north of CTL, and the other 
directly south (CTL is nominally located in the southern 
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Figure 7: Top to bottom: Primary PM2.5 sensitivi-
ties to emissions from Atlanta’s Hartsfield-Jackson 
International Airport (ATL); secondary PM2.5 sensi-
tivities to ATL; primary PM2.5 sensitivities to emis-
sions from Charlotte-Douglas International Airport 
(CLT); secondary PM2.5 sensitivities to CLT. 



Figure 8: Relative contributions of ATL, CLT and 
all other airports to PM2.5 sensitivities in the grid 
cells directly north and south of CLT. 

grid cell, though very close to the border). In the cell to the 
south, nearly one-third of PM2.5 is due to emissions from 
ATL, despite the fact that CTL is much closer (figure 8). 
However, in the grid cell to the north—in the direction of 
the prevailing winds—PM2.5 sensitivities are much higher. 
Further, we see that in the north cell, the proportion of 
primary PM2.5 sensitivity is much higher than in the south 
(54.3% vs 11.5%). Thus, for each grid cell in the domain, we 
can estimate the effects of policy introductions by scaling any 
one of our sensitivity parameters. For example, introducing 
low-sulfur fuel at major airports[5]; an increase in activity at 
airports near populated areas; or a re-balancing of aircraft 
operations from one hub to another. 
In order to calculate health impacts, PM2.5 sensitivities 

must be combined with geographically-distributed popula-
tion densities using health impact functions. Previous work 
using subtractive and RSM methodology have attributed 
between one and three hundred premature mortalities per 
year from aviation LTO emissions[3, 20, 7]. However, these 
estimates describe the response of the model to domain-wide 
or aggregated for multiple airports, rather than airport-level 
emissions. Correspondingly, they suggest policy changes at 
the domain-wide level. Changes in fuel composition, for ex-
ample, have been estimated to have the potential to reduce 
annual premature mortalities by 900–4000 worldwide[5]. 
While there are several epidemiological studies relating 

health outcomes with total PM2.5, there are fewer studies 
linking health impacts with its specific components. Studies 
have pointed out that the changing composition of fine partic-
ulate matter over time, especially in response to various con-
trol policies, could have an effect on concentration-response 
functions. Studies which produce data on PM2.5 speciation 
could aid in this task[18, 19]. 

4. CONCLUSIONS 
Using parallel computing resources, we have designed and 

initiated a sensitivity modeling exercise spanning 139 airports 
and 6 species, representing 76.7% of flights and 91.2% of fuel 
burn. Preliminary model runs have shown that the project 
will require 172,800 CPU-hours of modeling time; however, 

parallel implementation allows a optimal runtime of 11.25 
days across 40 compute nodes (each with 16 processors). Use 
of XSEDE resources makes a simulation of this scale feasi-
ble. When completed, the simulation outputs will describe 
individual sensitivities of fine particulate concentrations to 
emissions from a group of airports that is diverse in both 
location and activity, allowing health impacts to be quan-
tified for a variety of scenarios. Separation of sensitivities 
by PM2.5 precursor species will allow health impacts to be 
estimated with greater accuracy than allowed by modeling 
exercises using unspeciated particulate sensitivities. Finally, 
estimating the effects of growth in aviation activity at the 
airport level coupled with high-resolution future population 
estimates will allow the assessment of differential growth sce-
narios for airport activity related emissions and their human 
health impacts. 
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